Nuprl Lemma : free-dml-deq_wf

[T:Type]. ∀[eq:EqDecider(T)].  (free-dml-deq(T;eq) ∈ EqDecider(Point(free-DeMorgan-lattice(T;eq))))


Proof




Definitions occuring in Statement :  free-dml-deq: free-dml-deq(T;eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) top: Top free-dml-deq: free-dml-deq(T;eq) subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  free-dl-point deq-fset_wf fset_wf union-deq_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2 deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis unionEquality hypothesisEquality applyEquality setEquality independent_isectElimination lambdaEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-dml-deq(T;eq)  \mmember{}  EqDecider(Point(free-DeMorgan-lattice(T;eq))))



Date html generated: 2016_05_18-AM-11_43_44
Last ObjectModification: 2015_12_28-PM-01_56_52

Theory : lattices


Home Index