Nuprl Lemma : deq-fset_wf

[T:Type]. ∀[eq:EqDecider(T)].  (deq-fset(eq) ∈ EqDecider(fset(T)))


Proof




Definitions occuring in Statement :  deq-fset: deq-fset(eq) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  deq-fset: deq-fset(eq) member: t ∈ T uall: [x:A]. B[x] decidable__equal_fset so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset iff_weakening_uiff decidable__fset-member assert-deq-fset-member decidable__assert fset-all-iff fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind ifthenelse: if then else fi  bnot: ¬bb so_lambda: λ2x.t[x] so_apply: x[s] isl: isl(x) decidable__and rev_implies:  Q false: False not: ¬A bfalse: ff true: True btrue: tt assert: b and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) prop: implies:  Q all: x:A. B[x] subtype_rel: A ⊆B deq: EqDecider(T)
Lemmas referenced :  deq_wf lifting-strict-spread istype-void strict4-apply lifting-strict-decide strict4-decide iff_wf assert_wf not_wf isl_wf all_wf deq_subtype2 fset_wf equal_wf decidable_wf decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset iff_weakening_uiff decidable__fset-member assert-deq-fset-member decidable__assert fset-all-iff decidable__and
Rules used in proof :  universeEquality because_Cache isect_memberEquality hypothesisEquality cumulativity thin isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination natural_numberEquality unionElimination independent_pairFormation independent_functionElimination dependent_functionElimination functionExtensionality lambdaFormation functionEquality isectEquality instantiate applyEquality lambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (deq-fset(eq)  \mmember{}  EqDecider(fset(T)))



Date html generated: 2019_06_20-PM-01_59_25
Last ObjectModification: 2019_01_17-AM-09_39_28

Theory : finite!sets


Home Index