Nuprl Lemma : deq_subtype2

[T:Type]. (EqDecider(T) ⊆(∀x,y:T.  Dec(x y ∈ T)))


Proof




Definitions occuring in Statement :  deq: EqDecider(T) decidable: Dec(P) subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T decidable: Dec(P) all: x:A. B[x] not: ¬A implies:  Q deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q or: P ∨ Q rev_implies:  Q prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False
Lemmas referenced :  deq_wf bool_wf eqtt_to_assert it_wf equal_subtype equal-wf-base equal_wf false_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :universeIsType,  universeEquality sqequalRule functionExtensionality rename because_Cache setElimination dependent_functionElimination applyEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination inlEquality intEquality natural_numberEquality independent_functionElimination baseClosed functionEquality cumulativity dependent_pairFormation promote_hyp instantiate voidElimination inrEquality

Latex:
\mforall{}[T:Type].  (EqDecider(T)  \msubseteq{}r  (\mforall{}x,y:T.    Dec(x  =  y)))



Date html generated: 2019_06_20-PM-00_31_51
Last ObjectModification: 2018_09_26-PM-00_54_53

Theory : equality!deciders


Home Index