Nuprl Lemma : equal_subtype
∀[A,B:Type]. ∀[a1,a2:A]. ∀[b1,b2:B].  (a1 = a2 ∈ A) ⊆r (b1 = b2 ∈ B) supposing (a1 = a2 ∈ A) 
⇒ (b1 = b2 ∈ B)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
equalityElimination, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[a1,a2:A].  \mforall{}[b1,b2:B].    (a1  =  a2)  \msubseteq{}r  (b1  =  b2)  supposing  (a1  =  a2)  {}\mRightarrow{}  (b1  =  b2)
Date html generated:
2017_04_14-AM-07_36_38
Last ObjectModification:
2017_02_27-PM-03_08_47
Theory : subtype_1
Home
Index