Nuprl Lemma : equal_subtype

[A,B:Type]. ∀[a1,a2:A]. ∀[b1,b2:B].  (a1 a2 ∈ A) ⊆(b1 b2 ∈ B) supposing (a1 a2 ∈ A)  (b1 b2 ∈ B)


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution independent_functionElimination thin hypothesis equalityElimination axiomEquality extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule functionEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[a1,a2:A].  \mforall{}[b1,b2:B].    (a1  =  a2)  \msubseteq{}r  (b1  =  b2)  supposing  (a1  =  a2)  {}\mRightarrow{}  (b1  =  b2)



Date html generated: 2017_04_14-AM-07_36_38
Last ObjectModification: 2017_02_27-PM-03_08_47

Theory : subtype_1


Home Index