Nuprl Lemma : decidable__fset-member

[T:Type]. ∀eq:EqDecider(T). ∀x:fset(T). ∀a:T.  Dec(a ∈ x)


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset_wf deq_wf fset-member_wf assert_wf deq-fset-member_wf decidable__assert decidable_functionality iff_weakening_uiff assert-deq-fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis universeEquality because_Cache dependent_functionElimination independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x:fset(T).  \mforall{}a:T.    Dec(a  \mmember{}  x)



Date html generated: 2016_05_14-PM-03_38_33
Last ObjectModification: 2015_12_26-PM-06_42_12

Theory : finite!sets


Home Index