Nuprl Lemma : deq-fset-member_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a:T]. ∀[s:fset(T)].  (a ∈b s ∈ 𝔹)
Proof
Definitions occuring in Statement : 
deq-fset-member: a ∈b s, 
fset: fset(T), 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
deq-fset-member: a ∈b s, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
set-equal: set-equal(T;x;y), 
all: ∀x:A. B[x], 
guard: {T}
Lemmas referenced : 
bool_wf, 
iff_imp_equal_bool, 
deq-member_wf, 
l_member_wf, 
assert-deq-member, 
assert_wf, 
iff_wf, 
equal-wf-base, 
list_wf, 
set-equal_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
addLevel, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productEquality, 
cumulativity, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a:T].  \mforall{}[s:fset(T)].    (a  \mmember{}\msubb{}  s  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-03_38_09
Last ObjectModification:
2015_12_26-PM-06_42_28
Theory : finite!sets
Home
Index