Nuprl Lemma : fset-all-iff

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  uiff(fset-all(s;x.P[x]);∀[x:T]. ↑P[x] supposing x ∈ s)


Proof




Definitions occuring in Statement :  fset-all: fset-all(s;x.P[x]) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-all: fset-all(s;x.P[x]) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} cand: c∧ B top: Top false: False bnot: ¬bb ifthenelse: if then else fi  btrue: tt not: ¬A
Lemmas referenced :  assert-fset-null fset-filter_wf bnot_wf assert_witness fset-member_wf assert_wf fset-null_wf uall_wf isect_wf fset_wf bool_wf deq_wf decidable__assert member-fset-filter assert_of_bnot mem_empty_lemma fset-extensionality empty-fset_wf fset-member_witness bfalse_wf assert_elim and_wf equal_wf btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality hypothesis productElimination independent_isectElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry independent_pairEquality functionEquality universeEquality dependent_functionElimination unionElimination hyp_replacement Error :applyLambdaEquality,  voidElimination voidEquality dependent_set_memberEquality setElimination rename setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(fset-all(s;x.P[x]);\mforall{}[x:T].  \muparrow{}P[x]  supposing  x  \mmember{}  s)



Date html generated: 2016_10_21-AM-10_44_45
Last ObjectModification: 2016_07_12-AM-05_51_38

Theory : finite!sets


Home Index