Nuprl Lemma : member-fset-filter

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[x:T].  uiff(x ∈ {x ∈ P[x]};{x ∈ s ∧ (↑P[x])})


Proof




Definitions occuring in Statement :  fset-filter: {x ∈ P[x]} fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} so_apply: x[s] prop: implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q fset: fset(T) quotient: x,y:A//B[x; y] not: ¬A fset-filter: {x ∈ P[x]} fset-member: a ∈ s iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q false: False sq_type: SQType(T) true: True so_lambda: λ2x.t[x]
Lemmas referenced :  decidable__and2 fset-member_wf assert_wf decidable__fset-member decidable__assert list_wf set-equal_wf set-equal-reflex assert-deq-member filter_wf5 l_member_wf member_filter equal-wf-base equal_wf subtype_base_sq int_subtype_base fset-member_witness assert_witness fset-filter_wf fset_wf bool_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis isect_memberEquality applyEquality functionExtensionality independent_functionElimination because_Cache dependent_functionElimination lambdaFormation unionElimination promote_hyp equalityTransitivity equalitySymmetry pointwiseFunctionality sqequalRule pertypeElimination productElimination lambdaEquality setElimination rename setEquality voidElimination productEquality intEquality natural_numberEquality instantiate independent_isectElimination independent_pairEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[x:T].
    uiff(x  \mmember{}  \{x  \mmember{}  s  |  P[x]\};\{x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x])\})



Date html generated: 2017_04_17-AM-09_19_15
Last ObjectModification: 2017_02_27-PM-05_22_36

Theory : finite!sets


Home Index