Nuprl Lemma : set-equal-reflex
∀[T:Type]. ∀[x:T List].  set-equal(T;x;x)
Proof
Definitions occuring in Statement : 
set-equal: set-equal(T;x;y)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
set-equal: set-equal(T;x;y)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T  List].    set-equal(T;x;x)
Date html generated:
2016_05_14-PM-01_37_21
Last ObjectModification:
2015_12_26-PM-05_28_09
Theory : list_1
Home
Index