Nuprl Lemma : set-equal-reflex

[T:Type]. ∀[x:T List].  set-equal(T;x;x)


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) list: List uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  set-equal: set-equal(T;x;y) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T  List].    set-equal(T;x;x)



Date html generated: 2016_05_14-PM-01_37_21
Last ObjectModification: 2015_12_26-PM-05_28_09

Theory : list_1


Home Index