Nuprl Lemma : fset-filter_wf

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  ({x ∈ P[x]} ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-filter: {x ∈ P[x]} fset: fset(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q fset-filter: {x ∈ P[x]} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] so_apply: x[s] prop: implies:  Q set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  quotient-member-eq list_wf set-equal_wf set-equal-equiv filter_wf5 l_member_wf equal-wf-base fset_wf bool_wf member_filter iff_wf and_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality independent_isectElimination dependent_functionElimination applyEquality setElimination rename setEquality independent_functionElimination productEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality lambdaFormation addLevel independent_pairFormation impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    (\{x  \mmember{}  s  |  P[x]\}  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_39_21
Last ObjectModification: 2015_12_26-PM-06_41_53

Theory : finite!sets


Home Index