Nuprl Lemma : fset-member_witness

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a:T]. ∀[s:fset(T)].  (a ∈  (Ax ∈ a ∈ s))


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] implies:  Q member: t ∈ T universe: Type axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: fset-member: a ∈ s fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q set-equal: set-equal(T;x;y) all: x:A. B[x] guard: {T}
Lemmas referenced :  fset-member_wf fset_wf deq_wf assert_witness bool_wf iff_imp_equal_bool deq-member_wf l_member_wf assert-deq-member assert_wf iff_wf equal-wf-base list_wf set-equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality independent_functionElimination pointwiseFunctionalityForEquality pertypeElimination productElimination independent_isectElimination independent_pairFormation addLevel impliesFunctionality productEquality cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a:T].  \mforall{}[s:fset(T)].    (a  \mmember{}  s  {}\mRightarrow{}  (Ax  \mmember{}  a  \mmember{}  s))



Date html generated: 2016_05_14-PM-03_38_07
Last ObjectModification: 2015_12_26-PM-06_42_24

Theory : finite!sets


Home Index