Nuprl Lemma : fset-extensionality

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  uiff(x y ∈ fset(T);∀[a:T]. uiff(a ∈ x;a ∈ y))


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] fset: fset(T) quotient: x,y:A//B[x; y] all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] fset-member: a ∈ s set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced :  and_wf equal_wf fset_wf fset-member_wf fset-member_witness uall_wf uiff_wf deq_wf set-equal-equiv list_wf list_subtype_fset set-equal_wf equal-wf-base quotient-member-eq l_member_wf assert-deq-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis hyp_replacement thin equalitySymmetry sqequalRule dependent_set_memberEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination applyLambdaEquality setElimination rename productElimination independent_functionElimination cumulativity independent_pairEquality isect_memberEquality because_Cache equalityTransitivity lambdaEquality axiomEquality universeEquality pointwiseFunctionalityForEquality functionEquality pertypeElimination lambdaFormation applyEquality independent_isectElimination comment dependent_functionElimination productEquality promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    uiff(x  =  y;\mforall{}[a:T].  uiff(a  \mmember{}  x;a  \mmember{}  y))



Date html generated: 2017_04_17-AM-09_18_50
Last ObjectModification: 2017_02_27-PM-05_22_26

Theory : finite!sets


Home Index