Nuprl Lemma : fset-extensionality
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  uiff(x = y ∈ fset(T);∀[a:T]. uiff(a ∈ x;a ∈ y))
Proof
Definitions occuring in Statement : 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
fset-member: a ∈ s
, 
set-equal: set-equal(T;x;y)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced : 
and_wf, 
equal_wf, 
fset_wf, 
fset-member_wf, 
fset-member_witness, 
uall_wf, 
uiff_wf, 
deq_wf, 
set-equal-equiv, 
list_wf, 
list_subtype_fset, 
set-equal_wf, 
equal-wf-base, 
quotient-member-eq, 
l_member_wf, 
assert-deq-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
hyp_replacement, 
thin, 
equalitySymmetry, 
sqequalRule, 
dependent_set_memberEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
lambdaEquality, 
axiomEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
functionEquality, 
pertypeElimination, 
lambdaFormation, 
applyEquality, 
independent_isectElimination, 
comment, 
dependent_functionElimination, 
productEquality, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    uiff(x  =  y;\mforall{}[a:T].  uiff(a  \mmember{}  x;a  \mmember{}  y))
Date html generated:
2017_04_17-AM-09_18_50
Last ObjectModification:
2017_02_27-PM-05_22_26
Theory : finite!sets
Home
Index