Nuprl Lemma : list_subtype_fset

[A,B:Type].  (A List) ⊆fset(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  fset: fset(T) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B fset: fset(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q
Lemmas referenced :  list_wf subtype_rel_wf set-equal_wf set-equal-equiv subtype_rel_list set-equal-reflex quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality applyEquality independent_isectElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].    (A  List)  \msubseteq{}r  fset(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_14-PM-03_38_01
Last ObjectModification: 2015_12_26-PM-06_42_21

Theory : finite!sets


Home Index