Nuprl Lemma : mem_empty_lemma
∀a,eq:Top.  (a ∈ {} ~ False)
Proof
Definitions occuring in Statement : 
empty-fset: {}, 
fset-member: a ∈ s, 
top: Top, 
all: ∀x:A. B[x], 
false: False, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
empty-fset: {}, 
fset-member: a ∈ s, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
top_wf, 
deq_member_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}a,eq:Top.    (a  \mmember{}  \{\}  \msim{}  False)
Date html generated:
2016_05_14-PM-03_40_32
Last ObjectModification:
2015_12_26-PM-06_40_57
Theory : finite!sets
Home
Index