Nuprl Lemma : assert-fset-null
∀[T:Type]. ∀[s:fset(T)].  uiff(↑fset-null(s);s = {} ∈ fset(T))
Proof
Definitions occuring in Statement : 
empty-fset: {}, 
fset-null: fset-null(s), 
fset: fset(T), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
implies: P ⇒ Q, 
fset: fset(T), 
all: ∀x:A. B[x], 
quotient: x,y:A//B[x; y], 
fset-null: fset-null(s), 
empty-fset: {}, 
subtype_rel: A ⊆r B, 
guard: {T}, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
true: True, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
null: null(as), 
nil: [], 
it: ⋅, 
btrue: tt
Lemmas referenced : 
assert_wf, 
fset-null_wf, 
assert_witness, 
equal-wf-T-base, 
fset_wf, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
assert_of_null, 
list_subtype_fset, 
equal_functionality_wrt_subtype_rel2, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
quotient-member-eq, 
set-equal-equiv, 
empty-fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
independent_functionElimination, 
baseClosed, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
promote_hyp, 
lambdaFormation, 
pointwiseFunctionality, 
pertypeElimination, 
independent_isectElimination, 
lambdaEquality, 
productEquality, 
dependent_functionElimination, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s:fset(T)].    uiff(\muparrow{}fset-null(s);s  =  \{\})
Date html generated:
2017_04_17-AM-09_19_56
Last ObjectModification:
2017_02_27-PM-05_23_16
Theory : finite!sets
Home
Index