Nuprl Lemma : assert-fset-null

[T:Type]. ∀[s:fset(T)].  uiff(↑fset-null(s);s {} ∈ fset(T))


Proof




Definitions occuring in Statement :  empty-fset: {} fset-null: fset-null(s) fset: fset(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: implies:  Q fset: fset(T) all: x:A. B[x] quotient: x,y:A//B[x; y] fset-null: fset-null(s) empty-fset: {} subtype_rel: A ⊆B guard: {T} squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True assert: b ifthenelse: if then else fi  null: null(as) nil: [] it: btrue: tt
Lemmas referenced :  assert_wf fset-null_wf assert_witness equal-wf-T-base fset_wf list_wf set-equal_wf set-equal-reflex assert_of_null list_subtype_fset equal_functionality_wrt_subtype_rel2 equal-wf-base equal_wf squash_wf true_wf quotient-member-eq set-equal-equiv empty-fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality independent_functionElimination baseClosed sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality promote_hyp lambdaFormation pointwiseFunctionality pertypeElimination independent_isectElimination lambdaEquality productEquality dependent_functionElimination applyEquality imageElimination natural_numberEquality imageMemberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:fset(T)].    uiff(\muparrow{}fset-null(s);s  =  \{\})



Date html generated: 2017_04_17-AM-09_19_56
Last ObjectModification: 2017_02_27-PM-05_23_16

Theory : finite!sets


Home Index