Nuprl Lemma : assert-fset-null
∀[T:Type]. ∀[s:fset(T)]. uiff(↑fset-null(s);s = {} ∈ fset(T))
Proof
Definitions occuring in Statement :
empty-fset: {}
,
fset-null: fset-null(s)
,
fset: fset(T)
,
assert: ↑b
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
implies: P
⇒ Q
,
fset: fset(T)
,
all: ∀x:A. B[x]
,
quotient: x,y:A//B[x; y]
,
fset-null: fset-null(s)
,
empty-fset: {}
,
subtype_rel: A ⊆r B
,
guard: {T}
,
squash: ↓T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
true: True
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
null: null(as)
,
nil: []
,
it: ⋅
,
btrue: tt
Lemmas referenced :
assert_wf,
fset-null_wf,
assert_witness,
equal-wf-T-base,
fset_wf,
list_wf,
set-equal_wf,
set-equal-reflex,
assert_of_null,
list_subtype_fset,
equal_functionality_wrt_subtype_rel2,
equal-wf-base,
equal_wf,
squash_wf,
true_wf,
quotient-member-eq,
set-equal-equiv,
empty-fset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
independent_functionElimination,
baseClosed,
sqequalRule,
productElimination,
independent_pairEquality,
isect_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
universeEquality,
promote_hyp,
lambdaFormation,
pointwiseFunctionality,
pertypeElimination,
independent_isectElimination,
lambdaEquality,
productEquality,
dependent_functionElimination,
applyEquality,
imageElimination,
natural_numberEquality,
imageMemberEquality,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}[T:Type]. \mforall{}[s:fset(T)]. uiff(\muparrow{}fset-null(s);s = \{\})
Date html generated:
2017_04_17-AM-09_19_56
Last ObjectModification:
2017_02_27-PM-05_23_16
Theory : finite!sets
Home
Index