Nuprl Lemma : decidable__f-subset

[T:Type]. ∀eq:EqDecider(T). ∀xs,ys:fset(T).  Dec(xs ⊆ ys)


Proof




Definitions occuring in Statement :  f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] f-subset: xs ⊆ ys member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q
Lemmas referenced :  decidable__all_fset fset-member_wf decidable__fset-member fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality hypothesis independent_functionElimination because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}xs,ys:fset(T).    Dec(xs  \msubseteq{}  ys)



Date html generated: 2016_05_14-PM-03_41_29
Last ObjectModification: 2015_12_26-PM-06_40_22

Theory : finite!sets


Home Index