Nuprl Lemma : decidable__all_fset
∀[T:Type]. ∀eq:EqDecider(T). ∀[P:T ⟶ ℙ]. ((∀x:T. Dec(P[x])) 
⇒ (∀s:fset(T). Dec(∀x:T. P[x] supposing x ∈ s)))
Proof
Definitions occuring in Statement : 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
true: True
, 
bfalse: ff
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
fset-all: fset-all(s;x.P[x])
, 
guard: {T}
Lemmas referenced : 
fset_wf, 
all_wf, 
decidable_wf, 
deq_wf, 
btrue_wf, 
bfalse_wf, 
equal_wf, 
true_wf, 
false_wf, 
uiff_wf, 
assert_wf, 
isect_wf, 
fset-member_wf, 
decidable_functionality, 
iff_weakening_uiff, 
assert_witness, 
fset-member_witness, 
uall_wf, 
fset-all_wf, 
fset-all-iff, 
decidable__assert, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
rename, 
dependent_pairFormation, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
introduction, 
natural_numberEquality, 
axiomEquality, 
voidElimination, 
productElimination, 
allFunctionality, 
independent_isectElimination, 
inlFormation, 
inrFormation, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mforall{}s:fset(T).  Dec(\mforall{}x:T.  P[x]  supposing  x  \mmember{}  s)))
Date html generated:
2016_05_14-PM-03_41_25
Last ObjectModification:
2015_12_26-PM-06_40_36
Theory : finite!sets
Home
Index