Nuprl Lemma : decidable__all_fset

[T:Type]. ∀eq:EqDecider(T). ∀[P:T ⟶ ℙ]. ((∀x:T. Dec(P[x]))  (∀s:fset(T). Dec(∀x:T. P[x] supposing x ∈ s)))


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True bfalse: ff not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q fset-all: fset-all(s;x.P[x]) guard: {T}
Lemmas referenced :  fset_wf all_wf decidable_wf deq_wf btrue_wf bfalse_wf equal_wf true_wf false_wf uiff_wf assert_wf isect_wf fset-member_wf decidable_functionality iff_weakening_uiff assert_witness fset-member_witness uall_wf fset-all_wf fset-all-iff decidable__assert fset-null_wf fset-filter_wf bnot_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality rename dependent_pairFormation unionElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation introduction natural_numberEquality axiomEquality voidElimination productElimination allFunctionality independent_isectElimination inlFormation inrFormation isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  (\mforall{}s:fset(T).  Dec(\mforall{}x:T.  P[x]  supposing  x  \mmember{}  s)))



Date html generated: 2016_05_14-PM-03_41_25
Last ObjectModification: 2015_12_26-PM-06_40_36

Theory : finite!sets


Home Index