Nuprl Lemma : lifting-strict-decide
∀[F:Base]. ∀[p,q,r:Top].
  ∀[a,A,B:Top].
    (F[case a of inl(x) => A[x] | inr(x) => B[x];p;q;r] ~ case a of inl(x) => F[A[x];p;q;r] | inr(x) => F[B[x];p;q;r]) 
  supposing strict4(λx,y,z,w. F[x;y;z;w])
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
squash: ↓T
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
top_wf, 
equal_wf, 
injection-eta, 
isl_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
has-value_wf_base, 
is-exception_wf, 
eqff_to_assert, 
assert_of_bnot, 
strict4_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
hypothesis, 
dependent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_functionElimination, 
callbyvalueDecide, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
extract_by_obid, 
lambdaFormation, 
unionElimination, 
sqleReflexivity, 
isectElimination, 
imageElimination, 
axiomSqleEquality, 
decideExceptionCases, 
exceptionSqequal, 
because_Cache, 
instantiate, 
cumulativity, 
independent_isectElimination, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,A,B:Top].
        (F[case  a  of  inl(x)  =>  A[x]  |  inr(x)  =>  B[x];p;q;r]  \msim{}  case  a
          of  inl(x)  =>
          F[A[x];p;q;r]
          |  inr(x)  =>
          F[B[x];p;q;r]) 
    supposing  strict4(\mlambda{}x,y,z,w.  F[x;y;z;w])
Date html generated:
2017_04_14-AM-07_20_51
Last ObjectModification:
2017_02_27-PM-02_54_23
Theory : computation
Home
Index