Nuprl Lemma : decidable__equal_fset

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀xs,ys:fset(T).  Dec(xs ys ∈ fset(T))))


Proof




Definitions occuring in Statement :  fset: fset(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a f-subset: xs ⊆ ys rev_implies:  Q
Lemmas referenced :  fset_wf all_wf decidable_wf equal_wf mk_deq_wf f-subset_weakening fset-member_witness fset-member_wf f-subset_antisymmetry and_wf f-subset_wf decidable_functionality decidable__and2 decidable__f-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality universeEquality rename introduction independent_pairFormation independent_isectElimination dependent_functionElimination isect_memberEquality independent_functionElimination equalityTransitivity equalitySymmetry because_Cache productElimination

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}xs,ys:fset(T).    Dec(xs  =  ys)))



Date html generated: 2016_05_14-PM-03_41_41
Last ObjectModification: 2015_12_26-PM-06_40_20

Theory : finite!sets


Home Index