Nuprl Lemma : decidable__equal_fset
∀[T:Type]. ((∀x,y:T. Dec(x = y ∈ T))
⇒ (∀xs,ys:fset(T). Dec(xs = ys ∈ fset(T))))
Proof
Definitions occuring in Statement :
fset: fset(T)
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
uimplies: b supposing a
,
f-subset: xs ⊆ ys
,
rev_implies: P
⇐ Q
Lemmas referenced :
fset_wf,
all_wf,
decidable_wf,
equal_wf,
mk_deq_wf,
f-subset_weakening,
fset-member_witness,
fset-member_wf,
f-subset_antisymmetry,
and_wf,
f-subset_wf,
decidable_functionality,
decidable__and2,
decidable__f-subset
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality,
universeEquality,
rename,
introduction,
independent_pairFormation,
independent_isectElimination,
dependent_functionElimination,
isect_memberEquality,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
because_Cache,
productElimination
Latex:
\mforall{}[T:Type]. ((\mforall{}x,y:T. Dec(x = y)) {}\mRightarrow{} (\mforall{}xs,ys:fset(T). Dec(xs = ys)))
Date html generated:
2016_05_14-PM-03_41_41
Last ObjectModification:
2015_12_26-PM-06_40_20
Theory : finite!sets
Home
Index