Nuprl Lemma : mk_deq_wf

[T:Type]. ∀[p:∀x,y:T.  Dec(x y ∈ T)].  (mk_deq(p) ∈ EqDecider(T))


Proof




Definitions occuring in Statement :  mk_deq: mk_deq(p) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk_deq: mk_deq(p) deq: EqDecider(T) all: x:A. B[x] prop: implies:  Q decidable: Dec(P) or: P ∨ Q isl: isl(x) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q false: False not: ¬A bfalse: ff true: True btrue: tt ifthenelse: if then else fi  assert: b so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B
Lemmas referenced :  istype-universe decidable_wf equal_wf assert_wf all_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  extract_by_obid isectElimination thin hypothesisEquality Error :inhabitedIsType,  Error :universeIsType,  Error :isect_memberEquality_alt,  universeEquality Error :dependent_set_memberEquality_alt,  Error :lambdaEquality_alt,  because_Cache Error :lambdaFormation_alt,  unionElimination Error :equalityIsType1,  dependent_functionElimination independent_functionElimination Error :productIsType,  applyEquality voidElimination natural_numberEquality independent_pairFormation lemma_by_obid lambdaEquality lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[p:\mforall{}x,y:T.    Dec(x  =  y)].    (mk\_deq(p)  \mmember{}  EqDecider(T))



Date html generated: 2019_06_20-PM-00_31_53
Last ObjectModification: 2018_10_06-AM-11_20_18

Theory : equality!deciders


Home Index