Nuprl Lemma : f-subset_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  (xs ⊆ ys ∈ ℙ)


Proof




Definitions occuring in Statement :  f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  f-subset: xs ⊆ ys uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s]
Lemmas referenced :  all_wf isect_wf fset-member_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    (xs  \msubseteq{}  ys  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_38_24
Last ObjectModification: 2015_12_26-PM-06_42_16

Theory : finite!sets


Home Index