Nuprl Lemma : f-subset_weakening

[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  xs ⊆ ys supposing xs ys ∈ fset(T)


Proof




Definitions occuring in Statement :  f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a f-subset: xs ⊆ ys all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  fset-member_witness fset-member_wf f-subset_wf equal_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_functionElimination cumulativity hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality equalityTransitivity because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    xs  \msubseteq{}  ys  supposing  xs  =  ys



Date html generated: 2016_10_21-AM-10_44_08
Last ObjectModification: 2016_07_12-AM-05_50_59

Theory : finite!sets


Home Index