Nuprl Lemma : f-subset_weakening
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  xs ⊆ ys supposing xs = ys ∈ fset(T)
Proof
Definitions occuring in Statement : 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
f-subset: xs ⊆ ys
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
fset-member_witness, 
fset-member_wf, 
f-subset_wf, 
equal_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
cumulativity, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    xs  \msubseteq{}  ys  supposing  xs  =  ys
Date html generated:
2016_10_21-AM-10_44_08
Last ObjectModification:
2016_07_12-AM-05_50_59
Theory : finite!sets
Home
Index