Nuprl Lemma : f-subset_antisymmetry
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  (xs = ys ∈ fset(T)) supposing (ys ⊆ xs and xs ⊆ ys)
Proof
Definitions occuring in Statement : 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
f-subset: xs ⊆ ys
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
fset-extensionality, 
fset-member_witness, 
fset-member_wf, 
all_wf, 
isect_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
axiomEquality, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    (xs  =  ys)  supposing  (ys  \msubseteq{}  xs  and  xs  \msubseteq{}  ys)
Date html generated:
2016_05_14-PM-03_38_26
Last ObjectModification:
2015_12_26-PM-06_42_15
Theory : finite!sets
Home
Index