Nuprl Lemma : f-subset_antisymmetry

[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  (xs ys ∈ fset(T)) supposing (ys ⊆ xs and xs ⊆ ys)


Proof




Definitions occuring in Statement :  f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  f-subset: xs ⊆ ys uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x]
Lemmas referenced :  fset-extensionality fset-member_witness fset-member_wf all_wf isect_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination independent_pairFormation because_Cache independent_functionElimination hypothesis independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality axiomEquality universeEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    (xs  =  ys)  supposing  (ys  \msubseteq{}  xs  and  xs  \msubseteq{}  ys)



Date html generated: 2016_05_14-PM-03_38_26
Last ObjectModification: 2015_12_26-PM-06_42_15

Theory : finite!sets


Home Index