Nuprl Lemma : free-dl-point

[T,eq:Top].  (Point(free-dist-lattice(T; eq)) {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} )


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-point: Point(l) fset-antichain: fset-antichain(eq;ac) fset: fset(T) assert: b uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dist-lattice: free-dist-lattice(T; eq) lattice-point: Point(l) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq:Top].    (Point(free-dist-lattice(T;  eq))  \msim{}  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  )



Date html generated: 2016_05_18-AM-11_29_28
Last ObjectModification: 2015_12_28-PM-02_00_19

Theory : lattices


Home Index