Nuprl Lemma : free-dl-point
∀[T,eq:Top].  (Point(free-dist-lattice(T; eq)) ~ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} )
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-point: Point(l)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset: fset(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
set: {x:A| B[x]} 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-point: Point(l)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq:Top].    (Point(free-dist-lattice(T;  eq))  \msim{}  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  )
Date html generated:
2016_05_18-AM-11_29_28
Last ObjectModification:
2015_12_28-PM-02_00_19
Theory : lattices
Home
Index