Nuprl Lemma : fset-antichain_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac:fset(fset(T))].  (fset-antichain(eq;ac) ∈ 𝔹)


Proof




Definitions occuring in Statement :  fset-antichain: fset-antichain(eq;ac) fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-antichain: fset-antichain(eq;ac) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  fset-pairwise_wf fset_wf bnot_wf f-proper-subset-dec_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac:fset(fset(T))].    (fset-antichain(eq;ac)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_42_38
Last ObjectModification: 2015_12_26-PM-06_39_33

Theory : finite!sets


Home Index