Nuprl Lemma : fset-pairwise_wf

[T:Type]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)].  (fset-pairwise(x,y.R[x;y];s) ∈ 𝔹)


Proof




Definitions occuring in Statement :  fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset: fset(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-pairwise: fset-pairwise(x,y.R[x; y];s) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  fset-null_wf fset-filter_wf bnot_wf fset_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    (fset-pairwise(x,y.R[x;y];s)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-03_42_31
Last ObjectModification: 2015_12_26-PM-06_39_37

Theory : finite!sets


Home Index