Nuprl Lemma : union-deq_wf

[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)].  (union-deq(A;B;a;b) ∈ EqDecider(A B))


Proof




Definitions occuring in Statement :  union-deq: union-deq(A;B;a;b) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T union-deq: union-deq(A;B;a;b) deq: EqDecider(T) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q and: P ∧ Q prop: sq_stable: SqStable(P) squash: T sumdeq: sumdeq(a;b) eqof: eqof(d) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a assert: b ifthenelse: if then else fi  bfalse: ff false: False sq_type: SQType(T) guard: {T} true: True
Lemmas referenced :  sumdeq_wf all_wf iff_wf equal_wf assert_wf deq_wf squash_wf sq_stable__all sq_stable__iff sq_stable__equal sq_stable_from_decidable decidable__assert assert_witness safe-assert-deq subtype_base_sq int_subtype_base false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaFormation because_Cache unionEquality sqequalRule lambdaEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality setElimination rename independent_functionElimination dependent_functionElimination productElimination independent_pairEquality imageMemberEquality baseClosed imageElimination unionElimination independent_pairFormation independent_isectElimination applyLambdaEquality inlEquality natural_numberEquality instantiate intEquality voidElimination promote_hyp inrEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].    (union-deq(A;B;a;b)  \mmember{}  EqDecider(A  +  B))



Date html generated: 2017_04_14-AM-07_39_20
Last ObjectModification: 2017_02_27-PM-03_10_59

Theory : equality!deciders


Home Index