Nuprl Lemma : union-deq_wf
∀[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)].  (union-deq(A;B;a;b) ∈ EqDecider(A + B))
Proof
Definitions occuring in Statement : 
union-deq: union-deq(A;B;a;b), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
union-deq: union-deq(A;B;a;b), 
deq: EqDecider(T), 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
sq_stable: SqStable(P), 
squash: ↓T, 
sumdeq: sumdeq(a;b), 
eqof: eqof(d), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
false: False, 
sq_type: SQType(T), 
guard: {T}, 
true: True
Lemmas referenced : 
sumdeq_wf, 
all_wf, 
iff_wf, 
equal_wf, 
assert_wf, 
deq_wf, 
squash_wf, 
sq_stable__all, 
sq_stable__iff, 
sq_stable__equal, 
sq_stable_from_decidable, 
decidable__assert, 
assert_witness, 
safe-assert-deq, 
subtype_base_sq, 
int_subtype_base, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
because_Cache, 
unionEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
independent_pairFormation, 
independent_isectElimination, 
applyLambdaEquality, 
inlEquality, 
natural_numberEquality, 
instantiate, 
intEquality, 
voidElimination, 
promote_hyp, 
inrEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].    (union-deq(A;B;a;b)  \mmember{}  EqDecider(A  +  B))
Date html generated:
2017_04_14-AM-07_39_20
Last ObjectModification:
2017_02_27-PM-03_10_59
Theory : equality!deciders
Home
Index