Nuprl Lemma : sq_stable__iff
∀[P,Q:ℙ].  (SqStable(P) 
⇒ SqStable(Q) 
⇒ SqStable(P 
⇐⇒ Q))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
sq_stable__and, 
rev_implies_wf, 
sq_stable__implies, 
sq_stable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
hypothesis, 
sqequalRule, 
Error :functionIsType, 
Error :universeIsType, 
independent_functionElimination, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (SqStable(P)  {}\mRightarrow{}  SqStable(Q)  {}\mRightarrow{}  SqStable(P  \mLeftarrow{}{}\mRightarrow{}  Q))
Date html generated:
2019_06_20-AM-11_15_19
Last ObjectModification:
2018_09_27-PM-05_36_15
Theory : core_2
Home
Index