Nuprl Lemma : sq_stable__iff

[P,Q:ℙ].  (SqStable(P)  SqStable(Q)  SqStable(P ⇐⇒ Q))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  sq_stable__and rev_implies_wf sq_stable__implies sq_stable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality Error :isect_memberEquality_alt,  hypothesis sqequalRule Error :functionIsType,  Error :universeIsType,  independent_functionElimination because_Cache Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    (SqStable(P)  {}\mRightarrow{}  SqStable(Q)  {}\mRightarrow{}  SqStable(P  \mLeftarrow{}{}\mRightarrow{}  Q))



Date html generated: 2019_06_20-AM-11_15_19
Last ObjectModification: 2018_09_27-PM-05_36_15

Theory : core_2


Home Index