Nuprl Lemma : sq_stable__implies
∀[P,Q:ℙ].  (SqStable(Q) 
⇒ SqStable(P 
⇒ Q))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
imageElimination, 
introduction, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
extract_by_obid, 
isectElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (SqStable(Q)  {}\mRightarrow{}  SqStable(P  {}\mRightarrow{}  Q))
Date html generated:
2019_06_20-AM-11_15_17
Last ObjectModification:
2018_08_16-PM-02_40_07
Theory : core_2
Home
Index