Nuprl Lemma : free-DeMorgan-algebra_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (free-DeMorgan-algebra(T;eq) ∈ DeMorganAlgebra)
Proof
Definitions occuring in Statement : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Lemmas referenced : 
mk-DeMorgan-algebra_wf, 
free-DeMorgan-lattice_wf, 
dm-neg_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
squash_wf, 
true_wf, 
dm-neg-neg, 
iff_weakening_equal, 
dm-neg-properties, 
all_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
applyEquality, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
inlFormation, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-DeMorgan-algebra(T;eq)  \mmember{}  DeMorganAlgebra)
Date html generated:
2017_10_05-AM-00_42_32
Last ObjectModification:
2017_07_28-AM-09_17_21
Theory : lattices
Home
Index