Nuprl Lemma : mk-DeMorgan-algebra_wf

[L:BoundedDistributiveLattice]. ∀[n:Point(L) ⟶ Point(L)].
  mk-DeMorgan-algebra(L;n) ∈ DeMorganAlgebra 
  supposing (∀x:Point(L). ((n (n x)) x ∈ Point(L)))
  ∧ ((∀x,y:Point(L).  ((n x ∧ y) x ∨ y ∈ Point(L))) ∨ (∀x,y:Point(L).  ((n x ∨ y) x ∧ y ∈ Point(L))))


Proof




Definitions occuring in Statement :  mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) DeMorgan-algebra: DeMorganAlgebra bdd-distributive-lattice: BoundedDistributiveLattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q all: x:A. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] or: P ∨ Q rev_implies:  Q not: ¬A iff: ⇐⇒ Q bfalse: ff top: Top guard: {T} sq_type: SQType(T) uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 implies:  Q record: record(x.T[x]) record-update: r[x := v] btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ bounded-lattice-structure: BoundedLatticeStructure lattice-point: Point(l) DeMorgan-algebra-structure: DeMorganAlgebraStructure false: False lattice-meet: a ∧ b lattice-join: a ∨ b lattice-1: 1 lattice-0: 0 true: True squash: T cand: c∧ B DeMorgan-algebra: DeMorganAlgebra mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) dma-neg: ¬(x) DeMorgan-algebra-axioms: DeMorgan-algebra-axioms(dma)
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf bdd-distributive-lattice_wf assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf iff_transitivity rec_select_update_lemma subtype_base_sq assert_of_eq_atom eqtt_to_assert atom_subtype_base assert_wf bool_wf equal-wf-base uiff_transitivity eq_atom_wf subtype_rel_self istype-void istype-assert lattice-1_wf lattice-0_wf top-subtype-record DeMorgan-algebra-axioms_wf DeMorgan-algebra-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bdd-distributive-lattice-subtype-distributive-lattice distributive-lattice-distrib iff_weakening_equal true_wf squash_wf implies-DeMorgan-algebra-axioms
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry productIsType functionIsType universeIsType extract_by_obid isectElimination hypothesisEquality applyEquality instantiate lambdaEquality_alt productEquality cumulativity inhabitedIsType because_Cache independent_isectElimination equalityIsType1 unionIsType isect_memberEquality_alt isectIsTypeImplies rename setElimination impliesFunctionality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination atomEquality baseClosed closedConclusion baseApply equalityElimination unionElimination lambdaFormation functionExtensionality dependentIntersection_memberEquality functionEquality universeEquality tokenEquality dependentIntersectionEqElimination dependentIntersectionElimination dependent_set_memberEquality_alt isectIsType lambdaFormation_alt equalityIsType4 isect_memberFormation imageMemberEquality natural_numberEquality imageElimination lambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[L:BoundedDistributiveLattice].  \mforall{}[n:Point(L)  {}\mrightarrow{}  Point(L)].
    mk-DeMorgan-algebra(L;n)  \mmember{}  DeMorganAlgebra 
    supposing  (\mforall{}x:Point(L).  ((n  (n  x))  =  x))
    \mwedge{}  ((\mforall{}x,y:Point(L).    ((n  x  \mwedge{}  y)  =  n  x  \mvee{}  n  y))  \mvee{}  (\mforall{}x,y:Point(L).    ((n  x  \mvee{}  y)  =  n  x  \mwedge{}  n  y)))



Date html generated: 2019_10_31-AM-07_22_32
Last ObjectModification: 2018_11_12-AM-09_22_11

Theory : lattices


Home Index