Nuprl Lemma : implies-DeMorgan-algebra-axioms

[dma:DeMorganAlgebraStructure]
  ((∀x:Point(dma). (x)) x ∈ Point(dma)))
   (∀x,y:Point(dma).  (x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(dma)))
   DeMorgan-algebra-axioms(dma))


Proof




Definitions occuring in Statement :  DeMorgan-algebra-axioms: DeMorgan-algebra-axioms(dma) dma-neg: ¬(x) DeMorgan-algebra-structure: DeMorganAlgebraStructure lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q DeMorgan-algebra-axioms: DeMorgan-algebra-axioms(dma) and: P ∧ Q all: x:A. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  dma-neg_wf lattice-point_wf all_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-structure_wf equal_wf lattice-join_wf lattice-meet_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache sqequalRule instantiate independent_isectElimination lambdaEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[dma:DeMorganAlgebraStructure]
    ((\mforall{}x:Point(dma).  (\mneg{}(\mneg{}(x))  =  x))
    {}\mRightarrow{}  (\mforall{}x,y:Point(dma).    (\mneg{}(x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    {}\mRightarrow{}  DeMorgan-algebra-axioms(dma))



Date html generated: 2017_10_05-AM-00_42_12
Last ObjectModification: 2017_07_28-AM-09_17_04

Theory : lattices


Home Index