Nuprl Lemma : lattice-0_wf
∀[l:BoundedLatticeStructure]. (0 ∈ Point(l))
Proof
Definitions occuring in Statement : 
lattice-0: 0
, 
bounded-lattice-structure: BoundedLatticeStructure
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-0: 0
, 
bounded-lattice-structure: BoundedLatticeStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
lattice-point: Point(l)
Lemmas referenced : 
subtype_rel_self, 
bounded-lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
lemma_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality
Latex:
\mforall{}[l:BoundedLatticeStructure].  (0  \mmember{}  Point(l))
Date html generated:
2016_05_18-AM-11_20_18
Last ObjectModification:
2015_12_28-PM-02_03_28
Theory : lattices
Home
Index