Nuprl Lemma : lattice-0_wf

[l:BoundedLatticeStructure]. (0 ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-0: 0 bounded-lattice-structure: BoundedLatticeStructure lattice-point: Point(l) uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-0: 0 bounded-lattice-structure: BoundedLatticeStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} lattice-point: Point(l)
Lemmas referenced :  subtype_rel_self bounded-lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality instantiate lemma_by_obid isectElimination universeEquality functionEquality equalityTransitivity equalitySymmetry lambdaEquality hypothesisEquality axiomEquality

Latex:
\mforall{}[l:BoundedLatticeStructure].  (0  \mmember{}  Point(l))



Date html generated: 2016_05_18-AM-11_20_18
Last ObjectModification: 2015_12_28-PM-02_03_28

Theory : lattices


Home Index