Nuprl Lemma : lattice-0_wf
∀[l:BoundedLatticeStructure]. (0 ∈ Point(l))
Proof
Definitions occuring in Statement :
lattice-0: 0
,
bounded-lattice-structure: BoundedLatticeStructure
,
lattice-point: Point(l)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
lattice-0: 0
,
bounded-lattice-structure: BoundedLatticeStructure
,
record+: record+,
record-select: r.x
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
guard: {T}
,
lattice-point: Point(l)
Lemmas referenced :
subtype_rel_self,
bounded-lattice-structure_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
dependentIntersectionElimination,
dependentIntersectionEqElimination,
thin,
hypothesis,
applyEquality,
tokenEquality,
instantiate,
lemma_by_obid,
isectElimination,
universeEquality,
functionEquality,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
hypothesisEquality,
axiomEquality
Latex:
\mforall{}[l:BoundedLatticeStructure]. (0 \mmember{} Point(l))
Date html generated:
2016_05_18-AM-11_20_18
Last ObjectModification:
2015_12_28-PM-02_03_28
Theory : lattices
Home
Index