Nuprl Lemma : distributive-lattice-distrib

[L:DistributiveLattice]. ∀[a,b,c:Point(L)].
  ((a ∧ b ∨ a ∧ b ∨ a ∧ c ∈ Point(L)) ∧ (b ∨ c ∧ b ∧ a ∨ c ∧ a ∈ Point(L)))


Proof




Definitions occuring in Statement :  distributive-lattice: DistributiveLattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B distributive-lattice: DistributiveLattice squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q lattice-axioms: lattice-axioms(l)
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf lattice-join_wf lattice-meet_wf iff_weakening_equal distributive-lattice_wf lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination independent_pairFormation independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[L:DistributiveLattice].  \mforall{}[a,b,c:Point(L)].
    ((a  \mwedge{}  b  \mvee{}  c  =  a  \mwedge{}  b  \mvee{}  a  \mwedge{}  c)  \mwedge{}  (b  \mvee{}  c  \mwedge{}  a  =  b  \mwedge{}  a  \mvee{}  c  \mwedge{}  a))



Date html generated: 2017_10_05-AM-00_31_13
Last ObjectModification: 2017_07_28-AM-09_12_57

Theory : lattices


Home Index