Nuprl Lemma : dm-neg-properties
∀[T:Type]. ∀[eq:EqDecider(T)].
  ((∀[x,y:Point(free-DeMorgan-lattice(T;eq))].  (¬(x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(free-DeMorgan-lattice(T;eq))))
  ∧ (∀[x,y:Point(free-DeMorgan-lattice(T;eq))].  (¬(x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(free-DeMorgan-lattice(T;eq))))
  ∧ (¬(0) = 1 ∈ Point(free-DeMorgan-lattice(T;eq)))
  ∧ (¬(1) = 0 ∈ Point(free-DeMorgan-lattice(T;eq))))
Proof
Definitions occuring in Statement : 
dm-neg: ¬(x)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bounded-lattice-hom: Hom(l1;l2)
, 
squash: ↓T
, 
lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
opposite-lattice: opposite-lattice(L)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
guard: {T}
, 
true: True
Lemmas referenced : 
dm-neg-is-hom, 
lattice-point_wf, 
free-DeMorgan-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
opposite-lattice-0, 
opposite-lattice-1, 
deq_wf, 
squash_wf, 
true_wf, 
opposite-lattice_wf, 
opposite-lattice-meet, 
dm-neg_wf, 
subtype_rel_weakening, 
ext-eq_weakening, 
opposite-lattice-join
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
cumulativity, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
equalitySymmetry, 
hyp_replacement, 
equalityTransitivity, 
natural_numberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    ((\mforall{}[x,y:Point(free-DeMorgan-lattice(T;eq))].    (\mneg{}(x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}[x,y:Point(free-DeMorgan-lattice(T;eq))].    (\mneg{}(x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    \mwedge{}  (\mneg{}(0)  =  1)
    \mwedge{}  (\mneg{}(1)  =  0))
Date html generated:
2017_10_05-AM-00_41_36
Last ObjectModification:
2017_07_28-AM-09_16_42
Theory : lattices
Home
Index