Nuprl Lemma : dm-neg-properties

[T:Type]. ∀[eq:EqDecider(T)].
  ((∀[x,y:Point(free-DeMorgan-lattice(T;eq))].  (x ∧ y) = ¬(x) ∨ ¬(y) ∈ Point(free-DeMorgan-lattice(T;eq))))
  ∧ (∀[x,y:Point(free-DeMorgan-lattice(T;eq))].  (x ∨ y) = ¬(x) ∧ ¬(y) ∈ Point(free-DeMorgan-lattice(T;eq))))
  ∧ (0) 1 ∈ Point(free-DeMorgan-lattice(T;eq)))
  ∧ (1) 0 ∈ Point(free-DeMorgan-lattice(T;eq))))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-hom: Hom(l1;l2) squash: T lattice-hom: Hom(l1;l2) and: P ∧ Q lattice-point: Point(l) record-select: r.x opposite-lattice: opposite-lattice(L) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cand: c∧ B subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a top: Top guard: {T} true: True
Lemmas referenced :  dm-neg-is-hom lattice-point_wf free-DeMorgan-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf opposite-lattice-0 opposite-lattice-1 deq_wf squash_wf true_wf opposite-lattice_wf opposite-lattice-meet dm-neg_wf subtype_rel_weakening ext-eq_weakening opposite-lattice-join
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyLambdaEquality setElimination rename sqequalRule imageMemberEquality baseClosed imageElimination productElimination cumulativity applyEquality instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality independent_pairFormation voidElimination voidEquality equalitySymmetry hyp_replacement equalityTransitivity natural_numberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    ((\mforall{}[x,y:Point(free-DeMorgan-lattice(T;eq))].    (\mneg{}(x  \mwedge{}  y)  =  \mneg{}(x)  \mvee{}  \mneg{}(y)))
    \mwedge{}  (\mforall{}[x,y:Point(free-DeMorgan-lattice(T;eq))].    (\mneg{}(x  \mvee{}  y)  =  \mneg{}(x)  \mwedge{}  \mneg{}(y)))
    \mwedge{}  (\mneg{}(0)  =  1)
    \mwedge{}  (\mneg{}(1)  =  0))



Date html generated: 2017_10_05-AM-00_41_36
Last ObjectModification: 2017_07_28-AM-09_16_42

Theory : lattices


Home Index