Nuprl Lemma : dm-neg-is-hom

[T:Type]. ∀[eq:EqDecider(T)].
  x.¬(x) ∈ Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq))))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) opposite-lattice: opposite-lattice(L) bounded-lattice-hom: Hom(l1;l2) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dm-neg: ¬(x) lattice-point: Point(l) record-select: r.x opposite-lattice: opposite-lattice(L) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) top: Top subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] bdd-distributive-lattice: BoundedDistributiveLattice
Lemmas referenced :  free-dl-point deq-fset_wf fset_wf union-deq_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2 lattice-extend-is-hom opposite-lattice_wf free-DeMorgan-lattice_wf bounded-lattice-hom_wf free-dist-lattice_wf bdd-distributive-lattice_wf deq_wf fset-antichain-singleton fset-singleton_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality unionEquality hypothesisEquality applyEquality setEquality independent_isectElimination lambdaEquality equalityTransitivity equalitySymmetry unionElimination because_Cache setElimination rename axiomEquality universeEquality inrEquality dependent_set_memberEquality inlEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (\mlambda{}x.\mneg{}(x)  \mmember{}  Hom(free-DeMorgan-lattice(T;eq);opposite-lattice(free-DeMorgan-lattice(T;eq))))



Date html generated: 2016_05_18-AM-11_45_41
Last ObjectModification: 2015_12_28-PM-02_00_45

Theory : lattices


Home Index