Nuprl Lemma : lattice-extend-is-hom

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
  ac.lattice-extend(L;eq;eqL;f;ac) ∈ Hom(free-dist-lattice(T; eq);L))


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: bdd-distributive-lattice: BoundedDistributiveLattice squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  order-preserving-map-is-bounded-lattice-hom free-dist-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-extend_wf lattice-point_wf lattice-extend-order-preserving lattice-le_wf lattice-extend-meet lattice-extend-join lattice-0_wf equal_wf squash_wf true_wf lattice-extend-1 lattice-1_wf iff_weakening_equal subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality functionExtensionality because_Cache independent_isectElimination lambdaFormation independent_pairFormation productElimination setElimination rename imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality independent_functionElimination axiomEquality functionEquality instantiate productEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    (\mlambda{}ac.lattice-extend(L;eq;eqL;f;ac)  \mmember{}  Hom(free-dist-lattice(T;  eq);L))



Date html generated: 2017_10_05-AM-00_35_44
Last ObjectModification: 2017_07_28-AM-09_14_45

Theory : lattices


Home Index