Nuprl Lemma : lattice-extend-order-preserving
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
∀[x,y:Point(free-dist-lattice(T; eq))].
  lattice-extend(L;eq;eqL;f;x) ≤ lattice-extend(L;eq;eqL;f;y) supposing x ≤ y
Proof
Definitions occuring in Statement : 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
lattice-le: a ≤ b
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
cand: A c∧ B
, 
lattice-fset-meet: /\(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
f-subset: xs ⊆ ys
Lemmas referenced : 
free-dl-le, 
free-dl-point, 
decidable-equal-deq, 
lattice-meet_wf, 
lattice-le_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-join_wf, 
deq_wf, 
bdd-distributive-lattice_wf, 
lattice-fset-join-is-lub, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fset-image_wf, 
fset_wf, 
deq-fset_wf, 
lattice-fset-meet_wf, 
lattice-fset-join_wf, 
member-fset-image-iff, 
sq_stable_from_decidable, 
fset-member_wf, 
fset-ac-le-implies2, 
lattice-le_transitivity, 
bdd-distributive-lattice-subtype-lattice, 
lattice-fset-meet-is-glb
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
because_Cache, 
sqequalRule, 
axiomEquality, 
cumulativity, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
functionExtensionality, 
setElimination, 
rename, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
independent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[x,y:Point(free-dist-lattice(T;  eq))].
    lattice-extend(L;eq;eqL;f;x)  \mleq{}  lattice-extend(L;eq;eqL;f;y)  supposing  x  \mleq{}  y
Date html generated:
2017_10_05-AM-00_35_14
Last ObjectModification:
2017_07_28-AM-09_14_35
Theory : lattices
Home
Index