Nuprl Lemma : lattice-le_transitivity
∀[l:Lattice]. ∀[a,b,c:Point(l)].  (a ≤ c) supposing (a ≤ b and b ≤ c)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b
, 
lattice: Lattice
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
lattice-le: a ≤ b
, 
lattice: Lattice
, 
and: P ∧ Q
, 
guard: {T}
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
lattice_properties, 
lattice-le_wf, 
lattice-point_wf, 
lattice_wf, 
and_wf, 
equal_wf, 
lattice-meet_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[l:Lattice].  \mforall{}[a,b,c:Point(l)].    (a  \mleq{}  c)  supposing  (a  \mleq{}  b  and  b  \mleq{}  c)
Date html generated:
2016_10_26-PM-00_51_59
Last ObjectModification:
2016_07_12-AM-08_56_13
Theory : lattices
Home
Index