Nuprl Lemma : lattice_wf
Lattice ∈ 𝕌'
Proof
Definitions occuring in Statement : 
lattice: Lattice
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
lattice: Lattice
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
lattice-structure_wf, 
lattice-axioms_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
Lattice  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_18-AM-11_19_36
Last ObjectModification:
2015_12_28-PM-02_03_44
Theory : lattices
Home
Index