Nuprl Lemma : lattice-le_wf
∀[l:LatticeStructure]. ∀[a,b:Point(l)].  (a ≤ b ∈ Type)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
lattice-structure: LatticeStructure
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-le: a ≤ b
, 
prop: ℙ
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
lattice-meet_wf, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[a,b:Point(l)].    (a  \mleq{}  b  \mmember{}  Type)
Date html generated:
2017_10_05-AM-00_30_26
Last ObjectModification:
2017_07_28-AM-09_12_32
Theory : lattices
Home
Index