Nuprl Lemma : free-dl-le

[T:Type]. ∀eq:EqDecider(T). ∀x,y:Point(free-dist-lattice(T; eq)).  (x ≤ ⇐⇒ fset-ac-le(eq;x;y))


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) lattice-le: a ≤ b lattice-point: Point(l) fset-ac-le: fset-ac-le(eq;ac1;ac2) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a top: Top lattice-le: a ≤ b lattice-meet: a ∧ b free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) iff: ⇐⇒ Q implies:  Q squash: T true: True guard: {T} rev_implies:  Q fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  fset-ac-order fset-ac-glb_wf f-subset_wf iff_wf all_wf bool_wf deq-f-subset_wf bnot_wf fset-filter_wf fset-null_wf assert_witness iff_weakening_equal fset-antichain_wf assert_wf fset_wf true_wf squash_wf fset-ac-le_wf fset-ac-glb-is-glb rec_select_update_lemma free-dl-point deq_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set free-dist-lattice_wf lattice-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation because_Cache cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality independent_isectElimination isect_memberEquality voidElimination voidEquality dependent_functionElimination productElimination independent_pairFormation introduction imageElimination equalityTransitivity equalitySymmetry setElimination rename setEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(free-dist-lattice(T;  eq)).    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(eq;x;y))



Date html generated: 2016_05_18-AM-11_30_13
Last ObjectModification: 2016_01_17-PM-00_40_14

Theory : lattices


Home Index