Nuprl Lemma : fset-ac-le_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac1,ac2:fset(fset(T))]. (fset-ac-le(eq;ac1;ac2) ∈ ℙ)
Proof
Definitions occuring in Statement :
fset-ac-le: fset-ac-le(eq;ac1;ac2)
,
fset: fset(T)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fset-ac-le: fset-ac-le(eq;ac1;ac2)
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
all: ∀x:A. B[x]
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
prop: ℙ
Lemmas referenced :
fset-all_wf,
fset_wf,
bnot_wf,
fset-null_wf,
fset-filter_wf,
deq-f-subset_wf,
bool_wf,
all_wf,
iff_wf,
f-subset_wf,
assert_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
applyEquality,
setElimination,
rename,
setEquality,
functionEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[ac1,ac2:fset(fset(T))]. (fset-ac-le(eq;ac1;ac2) \mmember{} \mBbbP{})
Date html generated:
2016_05_14-PM-03_43_00
Last ObjectModification:
2015_12_26-PM-06_39_29
Theory : finite!sets
Home
Index