Nuprl Lemma : deq-f-subset_wf

[T:Type]. ∀[eq:EqDecider(T)].  (deq-f-subset(eq) ∈ {d:fset(T) ⟶ fset(T) ⟶ 𝔹| ∀x,y:fset(T).  (x ⊆ ⇐⇒ ↑(d y))} )


Proof




Definitions occuring in Statement :  deq-f-subset: deq-f-subset(eq) f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  deq-f-subset: deq-f-subset(eq) member: t ∈ T uall: [x:A]. B[x] decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff_weakening_uiff decidable__fset-member assert-deq-fset-member decidable__assert fset-all-iff fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind ifthenelse: if then else fi  bnot: ¬bb so_lambda: λ2x.t[x] so_apply: x[s] isl: isl(x) rev_implies:  Q false: False not: ¬A bfalse: ff true: True btrue: tt assert: b and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) implies:  Q prop: all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  deq_wf lifting-strict-spread istype-void strict4-apply lifting-strict-decide strict4-decide iff_wf all_wf assert_wf equal_wf not_wf isl_wf f-subset_wf decidable_wf fset_wf decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability iff_weakening_uiff decidable__fset-member assert-deq-fset-member decidable__assert fset-all-iff
Rules used in proof :  universeEquality because_Cache isect_memberEquality hypothesisEquality cumulativity thin isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination functionExtensionality natural_numberEquality unionElimination independent_pairFormation independent_functionElimination dependent_functionElimination lambdaFormation functionEquality isectEquality instantiate applyEquality lambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (deq-f-subset(eq)  \mmember{}  \{d:fset(T)  {}\mrightarrow{}  fset(T)  {}\mrightarrow{}  \mBbbB{}|  \mforall{}x,y:fset(T).    (x  \msubseteq{}  y  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}(d  x  y))\}  )



Date html generated: 2019_06_20-PM-01_59_21
Last ObjectModification: 2019_01_09-PM-03_28_01

Theory : finite!sets


Home Index