Nuprl Lemma : fset-ac-order
∀[T:Type]. ∀eq:EqDecider(T). Order({ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ac1,ac2.fset-ac-le(eq;ac1;ac2))
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
fset-antichain: fset-antichain(eq;ac), 
fset: fset(T), 
deq: EqDecider(T), 
order: Order(T;x,y.R[x; y]), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
order: Order(T;x,y.R[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
trans: Trans(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
anti_sym: AntiSym(T;x,y.R[x; y]), 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
fset-all: fset-all(s;x.P[x]), 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
top: Top, 
false: False, 
f-proper-subset: xs ⊆≠ ys
Lemmas referenced : 
fset-ac-le_weakening, 
set_wf, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
fset-ac-le_transitivity, 
fset-ac-le_wf, 
deq_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
fset-extensionality, 
deq-fset_wf, 
fset-ac-le-implies, 
fset-member_witness, 
fset-member_wf, 
decidable__fset-member, 
empty-fset_wf, 
mem_empty_lemma, 
member-fset-filter, 
assert-deq-f-subset, 
f-subset_transitivity, 
and_wf, 
equal_wf, 
assert-fset-antichain, 
decidable__equal_fset, 
decidable-equal-deq, 
f-subset_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
applyEquality, 
setEquality, 
functionEquality, 
functionExtensionality, 
independent_functionElimination, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
voidElimination, 
voidEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  Order(\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ;ac1,ac2.fset-ac-le(eq\000C;ac1;ac2))
Date html generated:
2016_10_21-AM-10_45_01
Last ObjectModification:
2016_07_12-AM-05_52_07
Theory : finite!sets
Home
Index