Nuprl Lemma : fset-ac-order

[T:Type]. ∀eq:EqDecider(T). Order({ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ;ac1,ac2.fset-ac-le(eq;ac1;ac2))


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-antichain: fset-antichain(eq;ac) fset: fset(T) deq: EqDecider(T) order: Order(T;x,y.R[x; y]) assert: b uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] order: Order(T;x,y.R[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B trans: Trans(T;x,y.E[x; y]) implies:  Q anti_sym: AntiSym(T;x,y.R[x; y]) fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) guard: {T} decidable: Dec(P) or: P ∨ Q not: ¬A top: Top false: False f-proper-subset: xs ⊆≠ ys
Lemmas referenced :  fset-ac-le_weakening set_wf fset_wf assert_wf fset-antichain_wf fset-ac-le_transitivity fset-ac-le_wf deq_wf assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf fset-extensionality deq-fset_wf fset-ac-le-implies fset-member_witness fset-member_wf decidable__fset-member empty-fset_wf mem_empty_lemma member-fset-filter assert-deq-f-subset f-subset_transitivity and_wf equal_wf assert-fset-antichain decidable__equal_fset decidable-equal-deq f-subset_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis cumulativity hypothesisEquality sqequalRule lambdaEquality setElimination rename dependent_set_memberEquality dependent_functionElimination productElimination independent_pairEquality applyEquality setEquality functionEquality functionExtensionality independent_functionElimination axiomEquality universeEquality isect_memberEquality equalityTransitivity equalitySymmetry unionElimination voidElimination voidEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  Order(\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ;ac1,ac2.fset-ac-le(eq\000C;ac1;ac2))



Date html generated: 2016_10_21-AM-10_45_01
Last ObjectModification: 2016_07_12-AM-05_52_07

Theory : finite!sets


Home Index