Nuprl Lemma : fset-ac-le_weakening

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:fset(fset(T))].  fset-ac-le(eq;a;b) supposing b ∈ fset(fset(T))


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop:
Lemmas referenced :  fset-ac-le_weakening_f-subset f-subset_weakening fset_wf deq-fset_wf assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf equal_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality applyEquality setElimination rename setEquality functionEquality independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(fset(T))].    fset-ac-le(eq;a;b)  supposing  a  =  b



Date html generated: 2016_05_14-PM-03_43_27
Last ObjectModification: 2015_12_26-PM-06_39_18

Theory : finite!sets


Home Index