Nuprl Lemma : fset-ac-le_weakening_f-subset

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:fset(fset(T))].  fset-ac-le(eq;a;b) supposing a ⊆ b


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) not: ¬A guard: {T} cand: c∧ B f-subset: xs ⊆ ys top: Top false: False
Lemmas referenced :  assert_witness fset-null_wf fset_wf fset-filter_wf bnot_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf deq-fset_wf deq_wf fset-all-iff assert_of_bnot equal-wf-T-base assert-fset-null not_wf fset-member_wf member-fset-filter assert-deq-f-subset f-subset_weakening mem_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality setElimination rename setEquality functionEquality functionExtensionality independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality productElimination independent_isectElimination lambdaFormation baseClosed addLevel impliesFunctionality independent_pairFormation dependent_functionElimination hyp_replacement Error :applyLambdaEquality,  voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(fset(T))].    fset-ac-le(eq;a;b)  supposing  a  \msubseteq{}  b



Date html generated: 2016_10_21-AM-10_44_51
Last ObjectModification: 2016_07_12-AM-05_51_49

Theory : finite!sets


Home Index