Nuprl Lemma : fset-ac-le_weakening_f-subset
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:fset(fset(T))].  fset-ac-le(eq;a;b) supposing a ⊆ b
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
not: ¬A
, 
guard: {T}
, 
cand: A c∧ B
, 
f-subset: xs ⊆ ys
, 
top: Top
, 
false: False
Lemmas referenced : 
assert_witness, 
fset-null_wf, 
fset_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
deq-fset_wf, 
deq_wf, 
fset-all-iff, 
assert_of_bnot, 
equal-wf-T-base, 
assert-fset-null, 
not_wf, 
fset-member_wf, 
member-fset-filter, 
assert-deq-f-subset, 
f-subset_weakening, 
mem_empty_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
functionExtensionality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
baseClosed, 
addLevel, 
impliesFunctionality, 
independent_pairFormation, 
dependent_functionElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(fset(T))].    fset-ac-le(eq;a;b)  supposing  a  \msubseteq{}  b
Date html generated:
2016_10_21-AM-10_44_51
Last ObjectModification:
2016_07_12-AM-05_51_49
Theory : finite!sets
Home
Index