Nuprl Lemma : assert-deq-f-subset

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  uiff(↑(deq-f-subset(eq) y);x ⊆ y)


Proof




Definitions occuring in Statement :  deq-f-subset: deq-f-subset(eq) f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q and: P ∧ Q prop: uiff: uiff(P;Q) uimplies: supposing a f-subset: xs ⊆ ys guard: {T} subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T
Lemmas referenced :  decidable__f-subset decidable__assert sq_stable_from_decidable sq_stable__uiff deq_wf assert_witness fset-member_wf fset-member_witness equal_wf assert_wf f-subset_wf iff_wf all_wf bool_wf fset_wf set_wf deq-f-subset_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality cumulativity because_Cache sqequalRule lambdaEquality applyEquality lambdaFormation setElimination rename equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation isect_memberFormation introduction isect_memberEquality setEquality independent_isectElimination universeEquality productElimination independent_pairEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    uiff(\muparrow{}(deq-f-subset(eq)  x  y);x  \msubseteq{}  y)



Date html generated: 2016_05_14-PM-03_41_38
Last ObjectModification: 2016_01_14-PM-10_41_05

Theory : finite!sets


Home Index