Nuprl Lemma : assert-deq-f-subset
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  uiff(↑(deq-f-subset(eq) x y);x ⊆ y)
Proof
Definitions occuring in Statement : 
deq-f-subset: deq-f-subset(eq)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
f-subset: xs ⊆ ys
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
decidable__f-subset, 
decidable__assert, 
sq_stable_from_decidable, 
sq_stable__uiff, 
deq_wf, 
assert_witness, 
fset-member_wf, 
fset-member_witness, 
equal_wf, 
assert_wf, 
f-subset_wf, 
iff_wf, 
all_wf, 
bool_wf, 
fset_wf, 
set_wf, 
deq-f-subset_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
lambdaFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
isect_memberEquality, 
setEquality, 
independent_isectElimination, 
universeEquality, 
productElimination, 
independent_pairEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    uiff(\muparrow{}(deq-f-subset(eq)  x  y);x  \msubseteq{}  y)
Date html generated:
2016_05_14-PM-03_41_38
Last ObjectModification:
2016_01_14-PM-10_41_05
Theory : finite!sets
Home
Index