Nuprl Lemma : fset-ac-le-implies
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac1,ac2:fset(fset(T))].
  (fset-ac-le(eq;ac1;ac2) ⇒ {∀a:fset(T). (a ∈ ac1 ⇒ (¬({y ∈ ac2 | deq-f-subset(eq) y a} = {} ∈ fset(fset(T)))))})
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
deq-fset: deq-fset(eq), 
deq-f-subset: deq-f-subset(eq), 
empty-fset: {}, 
fset-filter: {x ∈ s | P[x]}, 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
guard: {T}, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
apply: f a, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
not: ¬A, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
uiff: uiff(P;Q), 
uimplies: b supposing a
Lemmas referenced : 
equal-wf-T-base, 
fset_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
fset-member_wf, 
deq-fset_wf, 
fset-ac-le_wf, 
deq_wf, 
fset-all-iff, 
bnot_wf, 
fset-null_wf, 
assert_of_bnot, 
assert-fset-null
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
functionExtensionality, 
baseClosed, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
universeEquality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac1,ac2:fset(fset(T))].
    (fset-ac-le(eq;ac1;ac2)  {}\mRightarrow{}  \{\mforall{}a:fset(T).  (a  \mmember{}  ac1  {}\mRightarrow{}  (\mneg{}(\{y  \mmember{}  ac2  |  deq-f-subset(eq)  y  a\}  =  \{\})))\})
Date html generated:
2017_04_17-AM-09_20_36
Last ObjectModification:
2017_02_27-PM-05_23_24
Theory : finite!sets
Home
Index