Nuprl Lemma : assert-fset-antichain

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac:fset(fset(T))].
  uiff(↑fset-antichain(eq;ac);∀xs,ys:fset(T).  xs ⊆≠ ys) supposing (xs ∈ ac and ys ∈ ac))


Proof




Definitions occuring in Statement :  fset-antichain: fset-antichain(eq;ac) f-proper-subset: xs ⊆≠ ys deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  fset-antichain: fset-antichain(eq;ac) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q iff: ⇐⇒ Q all: x:A. B[x] not: ¬A false: False rev_implies:  Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  assert-fset-pairwise fset_wf deq-fset_wf iff_weakening_uiff assert_wf fset-pairwise_wf bnot_wf f-proper-subset-dec_wf all_wf isect_wf fset-member_wf f-proper-subset_wf assert_witness not_wf uiff_wf fset-antichain_wf deq_wf iff_transitivity assert_of_bnot assert-f-proper-subset-dec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis addLevel productElimination independent_pairFormation isect_memberFormation introduction independent_isectElimination sqequalRule lambdaEquality cumulativity because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination equalityTransitivity equalitySymmetry applyEquality universeEquality lambdaFormation independent_pairEquality allFunctionality impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac:fset(fset(T))].
    uiff(\muparrow{}fset-antichain(eq;ac);\mforall{}xs,ys:fset(T).    (\mneg{}xs  \msubseteq{}\mneq{}  ys)  supposing  (xs  \mmember{}  ac  and  ys  \mmember{}  ac))



Date html generated: 2016_05_14-PM-03_42_43
Last ObjectModification: 2015_12_26-PM-06_39_59

Theory : finite!sets


Home Index