Nuprl Lemma : assert-fset-antichain
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac:fset(fset(T))].
  uiff(↑fset-antichain(eq;ac);∀xs,ys:fset(T).  (¬xs ⊆≠ ys) supposing (xs ∈ ac and ys ∈ ac))
Proof
Definitions occuring in Statement : 
fset-antichain: fset-antichain(eq;ac)
, 
f-proper-subset: xs ⊆≠ ys
, 
deq-fset: deq-fset(eq)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
fset-antichain: fset-antichain(eq;ac)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
assert-fset-pairwise, 
fset_wf, 
deq-fset_wf, 
iff_weakening_uiff, 
assert_wf, 
fset-pairwise_wf, 
bnot_wf, 
f-proper-subset-dec_wf, 
all_wf, 
isect_wf, 
fset-member_wf, 
f-proper-subset_wf, 
assert_witness, 
not_wf, 
uiff_wf, 
fset-antichain_wf, 
deq_wf, 
iff_transitivity, 
assert_of_bnot, 
assert-f-proper-subset-dec
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
addLevel, 
productElimination, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
universeEquality, 
lambdaFormation, 
independent_pairEquality, 
allFunctionality, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac:fset(fset(T))].
    uiff(\muparrow{}fset-antichain(eq;ac);\mforall{}xs,ys:fset(T).    (\mneg{}xs  \msubseteq{}\mneq{}  ys)  supposing  (xs  \mmember{}  ac  and  ys  \mmember{}  ac))
Date html generated:
2016_05_14-PM-03_42_43
Last ObjectModification:
2015_12_26-PM-06_39_59
Theory : finite!sets
Home
Index